『大学 $1 \cdot 2$ 年生のためのすぐわかる統計学』第 1 刷 正誤表(2020 年 10 月 20 日)

Chapter 1 確率と確率分布

該当箇所	誤	正
p.18 下から 10 行目	$W=(1 \Pi 目の目を 7 で割った余り)$	W=7-(6X を 7 で割った余り $)$

Chapter 3 連続確率分布

該当箇所	誤	正
p.65 1 行目	<i>n</i> が大きいとき	<i>n</i> が十分大きいとき
p.65 3 行目	<i>n</i> が大きいとき	<i>n</i> が <mark>十分</mark> 大きいとき

Chapter 4 推定

該当箇所	誤	正
p.109	$\sqrt{1}$	1
下から4行目	\sqrt{n}	$\frac{\overline{n}}{n}$

付録 発展的な問題

該当箇所	誤	正
p.175 2 行目	f(a)	f
3項目と4項目	$f_y(y)$	$f_{f Y(y)}$
p.201	$\mathrm{HG}s$	HG
下から1行目		
p.206	$Q = Q_k$	$Q_1 = \frac{Q_1}{Q_1}$
5 行目	$Q_1 = \frac{Q_k}{k^2}$	$Q_{\mathbf{k}} = \frac{Q1}{k^2}$
p.206	\sim \sim 1 6	$\left(\sum_{i=1}^{\infty}1\right)^{-1}$ 6
6 行目	$Q_1 = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{0}{\pi^2}$	$Q_1 = \left(\sum_{k=1}^{\infty} \frac{1}{k^2}\right) = \frac{3}{\pi^2}$
p.206		
下から9行目	\overline{xy}	$ar{x}ar{y}$
問題 36(4)		

練習問題 解答

該当箇所	誤	正
p.216	問題 1-19 2	問題 1-19 <mark>(2)</mark>
左段 11 行目	III III	可度 1-19 <mark>(2)</mark>
p.219	$\int_{-35}^{35} 1_{44} \int_{-60}^{60} 1_{44}$	$\int_{44}^{35} 1_{44} \int_{44}^{60} 1_{44}$
左段7行目	$\int_{20} \ \overline{60}^{dt} \int_{50} \ \overline{60}^{dt}$	$\int_{20} \frac{1}{60} dt + \int_{50} \frac{1}{60} dt$
p.219	<i>X</i> と <i>Y</i> であること	<i>X</i> と <i>Y</i> が独立であること
右段 11 行目	A CI COSCC	A CI NATELL COSCC

p.221 右段 5 行目	$E[Y] = \dots = 2n$	$E[Y] = \cdots = n$
p.222 左段 13 行目	$E\left[\exp\left\{t\frac{\overline{X}-\mu}{\sqrt{\sigma^2/n}}\right\}^2\right]$	$E\left[\exp\left\{t\left(\frac{\overline{X}-\mu}{\sqrt{\sigma^2/n}}\right)^2\right\}\right]$
p.223 右段 4 行目	$\frac{1}{4}(V(X_1) + (X_2))$	$\frac{1}{4}(V(X_1) + V(X_2))$
p.223 右段 6 行目	$\frac{1}{9}(V(X_1) + (X_2) + V(X_3))$	$\frac{1}{9}(V(X_1) + V(X_2) + V(X_3))$
p.223 右段 下から 2 行目	$\left(\frac{X_1 - X_2}{2}\right) + \left(\frac{X_2 - X_1}{2}\right)$	$(\frac{X_1 - X_2}{2})^2 + (\frac{X_2 - X_1}{2})^2$
p.227 右段 9 行目	$\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \hat{\mu})^2 = 0$	$\frac{1}{\hat{\sigma}^2} \sum_{i=1}^n (x_i - \hat{\mu})^2 = 0$

発展問題解答

該当箇所誤

吸口凹门		_
p.234 左段 9,10 行目	$ = \frac{\frac{1}{3}(x+y)}{\frac{2}{3}(1+y)} = \begin{cases} \frac{x+y}{2(1+y)}, & 0 \le x \le 2 \text{ のとき} \\ 0, & x \text{ がその他の値のとき} \end{cases} $	$= \begin{cases} \frac{\frac{1}{3}(x+y)}{\frac{2}{3}(1+y)} = \frac{x+y}{2(1+y)}, & 0 \le x \le 2 \text{ のとき} \\ 0, & x \text{ がその他の値のとき} \end{cases}$
p.238 左段 12 行目	$\mu > 0$	$s \ge 0$
p.247 左段 14,15 行目	$\frac{X}{X+Y} \cdot X + Y = X$	$\frac{X}{X+Y} \cdot (X+Y) = X$
p.247 左段 下から 4 行目	$\int_0^1 \cdot x^{a+k-1}$	$\int_0^1 x^{a+k-1} (\cdot を消去した)$
p.248 左段 下から 5 行目	$f_{X,Y}$	$f_{X,Y}(x,y)$
p.255 左段 7,8,9 行目 (6 か所)	\overline{xy}	$ar{x}ar{y}$
p.256 左段 1 行目	$\frac{\sum_{i=1}^{n} (X_i - \overline{X})\varepsilon_i}{\sum_{i=1}^{n} (X_i - \overline{X})^2}$	$rac{\displaystyle\sum_{i=1}^n (x_i-\overline{x})arepsilon_i}{\displaystyle\sum_{i=1}^n (x_i-\overline{x})^2}$
p.256 左段 2 行目	$ \frac{\sum_{i=1}^{n} (X_i - \overline{X}) E[\varepsilon_i]}{\sum_{i=1}^{n} (X_i - \overline{X})^2} $	$\sum_{i=1}^{n} (x_i - \overline{x})^2$ $\sum_{i=1}^{n} (x_i - \overline{x}) E[\varepsilon_i]$ $\sum_{i=1}^{n} (x_i - \overline{x})^2$
p.257 左段 19 行目	$E[(\hat{\beta}_0 - \beta_0)\varepsilon_0]E[\hat{\beta}_0 - \beta_0]E[\varepsilon_0] = 0$	$E[(\hat{\beta}_0 - \beta_0)\varepsilon_0] = E[\hat{\beta}_0 - \beta_0]E[\varepsilon_0] = 0$
p.257 左段 20 行目	$E[(\hat{\beta}_1 - \beta_1)\varepsilon_0]E[\hat{\beta}_1 - \beta_1]E[\varepsilon_0] = 0$	$E[(\hat{\beta}_1 - \beta_1)\varepsilon_0] = E[\hat{\beta}_1 - \beta_1]E[\varepsilon_0] = 0$