『リスクを知るための確率統計入門』(第1刷)

正誤表

ページ	行	誤	正
2	3	フェルマー (1601-	フェルマー (1607?-
4	3	メレ (1610-	メレ (1607-
52	下から 10	ともいう)	ともいう、 $0 < \alpha < 1$)
52	下から 7	が連続型のとき,	の分布関数に逆関数 $F^{-1}(lpha)$ が存在するとき ,
105	下から 2	$\frac{1}{\sqrt{2\pi}y}$	$\frac{1}{\sqrt{2\pi}\sigma y}$
154	下から 2	$\binom{\alpha+x+1}{x}$	$\binom{\alpha+x-1}{x}$
163	下から 10	モーメントを求めよ.	キュムラントを求めよ.
223	6	クレディビリティ理論(5.3)	クレディビリティ理論 (5.3 節)
227	下から 5	=P(X=Y)	トル
228	7	= P(X = -Y)	FJV
239	下から 6	やスピアマンの $ ho$	トル
239	下から 4~3	やスピアマンの $ ho$	FJV
239	下から 1	$\rho_S = \frac{6}{\pi} \sin^{-1} \frac{\rho}{2}$	トル
272	下から 8	$\frac{E[V[Y_{ij} \Theta_i]]}{E[V[Y_{ij} \Theta_i]]}$	$\frac{E[V[Y_{ij} \Theta_i]]}{V[E[Y_{ij} \Theta_i]]}$
272	下から 6	$, E[V[Y_{ij} \Theta_i]], E[V[Y_{ij} \Theta_i]]$	$, E[V[Y_{ij} \Theta_i]], V[E[Y_{ij} \Theta_i]]$
272	下から 4	$, E[V[Y \Theta]], E[V[Y \Theta]]$	$,E[V[Y \Theta]],V[E[Y \Theta]]$
272	下から 2	$w:=E[V[Y \Theta]]$	$w:=V[E[Y \Theta]]$
273	10	$w:=V[W[Y \Theta]]$	$w:=V[E[Y \Theta]]$